LimeSDR XTRX v1.3 Board

Introduction

LimeSDR XTRX v1.3 Board Key Features

LimeSDR XTRX is Small form factor mini PCIe expansion card Software Defined Radio (SDR) board. It provides a hardware platform for developing and prototyping high-performance and logic-intensive digital and RF designs based on Xilinx’s XC7A50T-2CPG236I FPGA and Lime Microsystems transceiver chipsets.

LimeSDR XTRX is a building block for any Massive MIMO configuration from 2Tx2R to 32Tx32R for very high data rate applications. Hence, it could be used in conjunction with any digital processors (ASICs, GPPs and GPUs) of varying level of performance in terms of speed, power dissipation and cost to fit any air interface from narrowband to broadband signals. The board is designed for maximum scalability in terms of the following parameters:

  • Frequency and Bandwidth: The heard of the board is the Lime Transceiver RFIC (LMS7002) providing frequency flexibility up to 3.8GHz and bandwidths of over 100MHz.

  • Baseband Interface: A significant level of digital circuitry resides within the LMS7002 and accompanying Xilinx for the implementation of the key physical layer radio functions including filtering, decimation, interpolation and flexible interface such as PCIe and SerDes to name a few.

../_images/LimeSDR-XTRX_v1.3_3D_top.png

Figure 1: LimeSDR XTRX v1.3 board top view

../_images/LimeSDR-XTRX_v1.3_3D_bot.png

Figure 2: LimeSDR XTRX v1.3 board bottom view

LimeSDR XTRX board features:

  • RF and BB parameters:

    • Configuration: MIMO (2xTX, 2xRX)

    • Frequency range: 30 MHz – 3.8 GHz

    • Bandwidth: 30.72 MHz

    • Sample depth: 12 bit

    • Sample rate: 30.72 MSPS

    • Transmit power: max 10 dBm (depending on frequency)

  • USB 2.0 controller: Microchip USB3333E-GL

  • FPGA: board is designed based on Xilinx Artix-7 XC7A50T-2CPG236I FPGAs in 236-ball CSBGA package. Xilinx XC7A50T-2CPG236I features are:

    • 236-pin CSBGA package (10mm x 10mm, 0.5mm)

    • 52160 LUTs logic capacity

    • 2700 Kb Embedded Memory

    • 600 Kb distributed RAM

    • 120x 18x18-bit multipliers

    • 5x PLLs and 4x DLLs

    • 106 IOs

    • FPGA configuration via JTAG

  • RF transceiver: Lime Microsystems LMS7002M

  • EEPROM Memory: 128Kb EEPROM for LMS MCU firmware (optional); 128Kb EEPROM for FPGA data (optional)

  • FLASH Memory: 256Mb Flash memory for FPGA configuration

  • Temperature sensor: TMP1075NDRLR

  • General user inputs/outputs:

    • 2x Green LEDs

    • 4x GPIOs 3.3V in GPIO connector

    • 1x GPIO in Baseband connectors

  • Connections:

    • USB 2.0 (Micro-B) socket

    • Coaxial RF (U.FL female) connectors

    • FPGA GPIO 8-pin FPC connector

    • FPGA JTAG connector (unpopulated)

    • Mini PCIe edge connector

    • RF Baseband 15-pin FPC connectors

  • Clock system:

    • 26.00MHz on board VCTCXO

    • VCTCXO may be tuned by on board DAC

    • Reference clock input and output connectors (U.FL and mPCIe)

  • Board size: 50.8mm x 20.97mm (PCIe Mini card form factor)

  • Board power sources: USB connector (5V) or mini PCIe (3.3V)

For more information on the following topics, refer to the respective documents:

Board Overview

One of the key elements of LimeSDR XTRX board is the Xilinx Artix-7 (XC7A50T-2CPG236I) FPGA. It’s main function is to transfer digital data between LMS7002M RF transceiver and PC through a mini PCIe edge connector or Serial connection to another FPGA board. The block diagram for LimeSDR XTRX board is presented in the Figure 3.

../_images/LimeSDR-XTRX_v1.3_diagrams_BD.png

Figure 3: LimeSDR XTRX v1.3 board block diagram

This section contains component location description on the board. LimeSDR XTRX board picture with highlighted connectors and main components are presented in Figure 4 and Figure 5, respectively.

../_images/LimeSDR-XTRX_v1.3_components_top.png

Figure 4: LimeSDR XTRX v1.3 board top connectors and main components

../_images/LimeSDR-XTRX_v1.3_components_bot.png

Figure 5: LimeSDR XTRX v1.3 board bottom connectors and main components

Description of board components is given in the Table 1.

Table 1. Board components

Featured Devices

Board Reference

Type

Description

IC1

RF transceiver

Lime Microsystems LMS7002M

IC7

FPGA

Xilinx Artix-7(XC7A50T-2CPG236I)

IC19

USB 3.0

microcontroller

Microchip USB 2.0 to transceiver chip USB3333E-GL

Miscellaneous devices

IC9

IC

Temperature sensor TMP1075NDRLR

IC16

IC

SIM Card Interface NVT4555UKZ

Configuration, Status and Setup Elements

X9

JTAG chain

connector

FPGA programming connector on the PCB bottom side

(compatible with Molex 788641001 connector)

LED1, LED2

Status LEDs

User defined FPGA indication LEDs

General User Input/Output

X12

Pin header

8-pin FPC connector

Memory Devices

IC2

IC

I²C EEPROM Memory 128Kb (16 x 8), connected to LMS7002M RF transceiver I2C bus

IC13

IC

I²C EEPROM Memory 128Kb (16K x 8), connected to FPGA I2C bus

IC18

IC

SPI Flash Memory 256 Mb (32M x 8) connected to FPGA SPI

Communication Ports

X11

USB 2.0

USB 2.0 Micro-B socket

X10

mini PCIe

mini PCI Express Card Edge connector

Clock Circuitry

XO1

VCTCXO

26.00 MHz Voltage Controlled Temperature Compensated Crystal Oscillator

IC17

IC

16 bit DAC for VCTCXO (XO1) frequency tuning (default)

IC11

IC

GNSS Receiver module

IC8

IC

Clock buffer LMK00105

IC15

IC

Analogue switch

IC20

IC

Analogue switch

X7

U.FL connector

Reference clock input/output (CLK)

X6

U.FL connector

1PPS input

X5

U.FL connector

GNSS (active) antenna connector

Power Supply

IC22

IC

Four-output switching regulator LP8758A1E0YFFR

IC31

IC

Four-output switching regulator LP8758A1E0YFFR

IC21

IC

Linear regulator LD39100PUR

IC26

IC

Linear regulator LD39100PUR

IC29

IC

Linear regulator LD39100PUR

IC32

IC

Linear regulator LD39100PUR

LimeSDR XTRX Board Architecture

More detailed description of LimeSDR XTRX board components and interconnections is given in the following sections of this chapter.

LMS7002M RF transceiver digital connectivity

The interface and control signals are described below:

  • Digital Interface Signals: LMS7002 is using data bus LMS_DIQ1_D[11:0] and LMS_DIQ2_D[11:0], LMS_EN_IQSEL1 and LMS_EN_IQSEL2, LMS_FCLK1 and LMS_FCLK2, LMS_MCLK1 and LMS_MCLK2 signals to transfer data to/from the XILINX FPGA. Indices 1 and 2 indicate transceiver digital data PORT-1 or PORT-2. Any of these ports can be used to transmit or receive digital IQ data. By default PORT-1 is selected as transmitter port and PORT-2 is selected as receiver port. The FCLK# is input clock and MCLK# is output clock for the LMS7002M transceiver. TXNRX signals are used to indicate ports direction. Please refer to LMS7002M transceiver datasheet page 12-13. [link] for the LMS7002M interface timing.

  • LMS Control Signals: these signals are used for the following functions within the LMS7002 RFIC: * LMS_RXEN, LMS_TXEN – receiver and transmitter enable/disable signals connected to FPGA Bank 14 (3.3V). * LMS_RESET – LMS7002M reset is connected to FPGA Bank 14 (3.3V).

  • SPI Interface: LMS7002M transceiver is configured via 4-wire SPI interface: FPGA_SPI_SCLK, FPGA_SPI_MOSI, FPGA_SPI_MISO, FPGA_SPI_LMS_SS. The SPI interface is connected to FPGA Bank 14 (3.3V).

  • LMS I2C Interface: can be used for LMS EEPROM content modification or debug purposes. The signals LMS_I2C_SCL and LMS_I2C_DATA are connected to EEPROM.

Table 2. LMS7002M RF transceiver digital interface pins

Chip pin (IC1)

Chip reference (IC1)

Schematic signal name

FPGA pin

FPGA I/O standard

Description

E5

xoscin_tx

LMS_TxPLL_CLK

Connected to reference clock

AB34

MCLK1

LMS_MCLK1

L17

3.3V

AA33

FCLK1

LMS_FCLK1

G19

3.3V

V32

TXNRX1

LMS_TXNRX1

V15

3.3V

U29

TXEN

LMS_TXEN

W19

3.3V

Y32

ENABLE_IQSEL1

LMS_EN_IQSEL1

P19

3.3V

AG31

DIQ1_D0

LMS_DIQ1_D0

J17

3.3V

AF30

DIQ1_D1

LMS_DIQ1_D1

H17

3.3V

AF34

DIQ1_D2

LMS_DIQ1_D2

H19

3.3V

AE31

DIQ1_D3

LMS_DIQ1_D3

K17

3.3V

AD30

DIQ1_D4

LMS_DIQ1_D4

G17

3.3V

AC29

DIQ1_D5

LMS_DIQ1_D5

V16

3.3V

AE33

DIQ1_D6

LMS_DIQ1_D6

J19

3.3V

AD32

DIQ1_D7

LMS_DIQ1_D7

M19

3.3V

AC31

DIQ1_D8

LMS_DIQ1_D8

P17

3.3V

AC33

DIQ1_D9

LMS_DIQ1_D9

N19

3.3V

AB30

DIQ1_D10

LMS_DIQ1_D10

U17

3.3V

AB32

DIQ1_D11

LMS_DIQ1_D11

U16

3.3V

AM24

xoscin_rx

LMS_RxPLL_CLK

Connected to reference clock

P34

MCLK2

LMS_MCLK2

W5

3.3V

R29

FCLK2

LMS_FCLK2

W6

3.3V

U31

TXNRX2

LMS_TXNRX2

U5

3.3V

V34

RXEN

LMS_RXEN

W18

3.3V

R33

ENABLE_IQSEL2

LMS_EN_IQSEL2

W7

3.3V

H30

DIQ2_D0

LMS_DIQ2_D0

W2

3.3V

J31

DIQ2_D1

LMS_DIQ2_D1

U2

3.3V

K30

DIQ2_D2

LMS_DIQ2_D2

U3

3.3V

K32

DIQ2_D3

LMS_DIQ2_D3

V3

3.3V

L31

DIQ2_D4

LMS_DIQ2_D4

V4

3.3V

K34

DIQ2_D5

LMS_DIQ2_D5

V2

3.3V

M30

DIQ2_D6

LMS_DIQ2_D6

V5

3.3V

M32

DIQ2_D7

LMS_DIQ2_D7

V4

3.3V

N31

DIQ2_D8

LMS_DIQ2_D8

V8

3.3V

N33

DIQ2_D9

LMS_DIQ2_D9

U4

3.3V

P30

DIQ2_D10

LMS_DIQ2_D10

U8

3.3V

P32

DIQ2_D11

LMS_DIQ2_D11

U7

3.3V

U33

CORE_LDO_EN

LMS_CORE_LDO_EN

W17

3.3V

E27

RESET

LMS_RESET

U19

3.3V

D28

SEN

FPGA_SPI_LMS_SS

W13

3.3V

SPI interface

C29

SCLK

FPGA_SPI_SCLK

W14

3.3V

SPI interface

F30

SDIO

FPGA_SPI_MOSI

W16

3.3V

SPI interface

F28

SDO

FPGA_SPI_MISO

W15

3.3V

SPI interface

D26

SDA

LMS_I2C_SDA

Connected to EEPROM

C27

SCL

LMS_I2C_SCL

Connected to EEPROM

RF network control signals

LimeSDR XTRX RF network contains matching networks, RF switches, loopback variable attenuator and U.FL connectors (X1, X3 - TX and X2, X4 - RX) as shown in Figure 6.

../_images/LimeSDR-XTRX_v1.3_diagrams_RFFE.png

Figure 6. LimeSDR XTRX v1.3 RF diagram

LMS7002M RF transceiver TX and RX ports has dedicated matching network which determines the working frequency range. More detailed information on LMS7002M RF transceiver ports and matching network frequency ranges is listed in the Table 3.

Table 3. LMS7002M RF transceiver ports and matching networks frequency ranges

LMS7002M RF transceiver port

Frequency range

TX1_1, TX2_1

2 GHz - 2.6 GHz

TX1_2, TX2_2

30 MHz - 1.9 GHz

RX1_H, RX2_H

2 GHz - 2.6 GHz

RX1_W, RX2_W

700 MHz - 900 MHz

RX1_L, RX2_L

300 MHz – 2.2 GHz

RF network switches are controlled via 2.4V logic signals. This is achieved by resistor dividers connected between FPGA (TX_SW, RX_SW1, RX_SW2) and switch control pin (TX_SW_DIV, RX_SW1_DIV, RX_SW2_DIV). RF network control signals are described in the Table 4.

Table 4. RF network control signals

Component

Schematic signal name

I/O standard

FPGA pin

Description

SKY13330-397LF(IC5 and IC6)

TX_SW/TX_SW_DIV

3.3V

P1

FPGA 3.3V logic level signal divided to 2.4V logic level.

SKY13414-485LF(IC3 and IC4)

RX_SW1/RX_SW1_DIV

3.3V

K3

FPGA 3.3V logic level signal divided to 2.4V logic level.

RX_SW2/RX_SW2_DIV

3.3V

J3

FPGA 3.3V logic level signal divided to 2.4V logic level.

LMS7002M baseband connectors

LMS7002M RF transceiver (IC1)) baseband signals (RX ADC and TX DAC) can be accessed via 0.3mm pitch 15 pin FPC connectors (X13 and X8). RX DAC connector pinout is shown in Table 5. TX ADC connector pinout is shown in Table 6.

Table 5. LMS7002 base band TX DAC connector (X13)

Pin

Schematic signal name

Description

1

GND

Ground

2

DAC1Q_P

Channel 1 quadrature signal differential positive

3

DAC1Q_N

Channel 1 quadrature signal differential negative

4

GND

Ground

5

DAC1I_P

Channel 1 in-phase signal differential positive

6

DAC1I_N

Channel 1 in-phase signal differential negative

7

GND

Ground

8

GPIO13

General purpose input/output (FPGA pin T17)

9

GND

Ground

10

DAC2Q_P

Channel 2 quadrature signal differential positive

11

DAC2Q_N

Channel 2 quadrature signal differential negative

12

GND

Ground

13

DAC2I_P

Channel 2 in-phase signal differential positive

14

DAC2I_N

Channel 2 in-phase signal differential negative

15

GND

Ground

Table 6. LMS7002 base band RX ADC connector (X8)

Pin

Schematic signal name

Description

1

GND

Ground

2

ADC1I_P

Channel 1 in-phase signal differential positive

3

ADC1I_N

Channel 1 in-phase signal differential negative

4

GND

Ground

5

DAC1Q_P

Channel 1 quadrature signal differential positive

6

DAC1Q_N

Channel 1 quadrature signal differential negative

7

GND

Ground

8

GPIO13

General purpose input/output (FPGA pin T17)

9

GND

Ground

10

ADC2I_P

Channel 2 in-phase signal differential positive

11

ADC2I_N

Channel 2 in-phase signal differential negative

12

GND

Ground

13

ADC2Q_P

Channel 2 quadrature signal differential positive

14

ADC2Q_N

Channel 2 quadrature signal differential negative

15

GND

Ground

USB 2.0 controller

LimeSDR XTRX could be powered and programmed via USB 2.0 by connecting it to micro-B port or mini PCIe connector. USB 2.0 is implemented using Microchip USB3333E-GL transceiver [link]. The controller signals description are shown below:

  • USB_D[7:0] – 8-bit data interface is connected to FPGA.

  • USB_NRST, USB_NXT, USB_DIR, USB_STP – interface control signals.

  • USB_CLK – interface clock. Clock from transceiver is fed to XILINX FPGA.

  • USB_26M – interface clock. Clock from FPGA is fed to Lime transceiver.

USB 2.0 controller pins, schematic signal names, FPGA interconnections and I/O standard are described in Table 7.

Table 7. USB 2.0 controller interface

Chip pin (IC19)

Chip reference (IC19)

Schematic signal name

FPGA pin

I/O standard

C2

RESETB

USB_NRST

M18

3.3V

E3

DAT7

USB_D7

C15

3.3V

E4

DAT6

USB_D6

A14

3.3V

E5

DAT5

USB_D5

A15

3.3V

D4

DAT4

USB_D4

B15

3.3V

D5

DAT3

USB_D3

A16

3.3V

C4

DAT2

USB_D2

B16

3.3V

C5

DAT1

USB_D1

A17

3.3V

B4

DAT0

USB_D0

B17

3.3V

A3

STP

USB_STP

C17

3.3V

B5

NXT

USB_NXT

A18

3.3V

A4

DIR

USB_DIR

B18

3.3V

A5

CLKOUT

USB_CLK

C16

3.3V

A2

REFCLK

USB_26M

E19

3.3V

Indication LEDs

LimeSDR XTRX board comes with two green indicator LEDs. These LEDs are soldered on the top of the board near the USB Micro-B connector.

../_images/LimeSDR-XTRX_v1.3_components_LEDs.png

Figure 7. LimeSDR XTRX indication LEDs (top)

LEDs are connected to FPGA hence their function may be programmed according to the user requirements. Default LEDs configuration and description are shown in Table 8.

Table 8. Default LEDs configuration

Board Reference

Schematic name

Board label

FPGA pin

Description

LED1

FPGA_LED1

LED1

N18

User defined

LED2

FPGA_LED2

LED2

V19

User defined

Low speed interfaces

FPGA_SPI pins, schematic signal names, FPGA interconnections and I/O standards/levels are shown in Table 9.

Table 9. FPGA_SPI interface pins

Schematic signal name

FPGA pin

I/O standard

Comment

FPGA_SPI_SCLK

W14

3.3V

Serial Clock (FPGA output)

FPGA_SPI_MOSI

W16

3.3V

Data (FPGA output)

FPGA_SPI_MISO

W15

3.3V

Data (FPGA input)

FPGA_SPI_LMS_SS

W13

3.3V

IC1 (LMS7002 (IC1)) SPI slave select (FPGA output)

FPGA_CFG_SPI pins, schematic signal names, FPGA interconnections and I/O standards are shown in Table 10.

Table 10. FPGA_CFG_SPI interface pins

Schematic signal name

FPGA pin

I/O standard

Comment

FPGA_CFG_CCLK

C11

3.3V

Serial Clock (FPGA output)

FPGA_CFG_CS

K19

3.3V

IC18 SPI slave select (FPGA output)

FPGA_CFG_D00

D18

3.3V

FPGA_CFG_D01

D19

3.3V

FPGA_CFG_D02

G18

3.3V

FPGA_CFG_D03

F18

3.3V

FPGA_I2C1 (temperature sensor, EEPROM, CLK DAC, switching regulator) and FPGA_I2C2 (switching regulator) interface slave devices and related information are given in Table 11.

Table 11. FPGA_I2C1 and FPGA_I2C2 interfaces pins

I2C slave device

Slave device

Inteface

I2C address

I/O standard

Comment

IC9

Temperature sensor

FPGA_I2C1

1 0 0 1 0 1 1 RW

3.3V

TMP1075NDRLR

IC13

EEPROM

1 0 1 0 0 0 0 RW

3.3V

M24128

IC17

CLK DAC

1 0 0 1 1 0 0 RW

3.3V

AD5693RACPZ

IC22

Switching regulator

1 1 0 0 0 0 0 RW

3.3V

LP8758A1E0YFFR

IC31

Switching regulator

FPGA_I2C2

1 1 0 0 0 0 0 RW

3.3V

LP8758A1E0YFFR

To debug FPGA design, flash bitstream to FPGA and/or Flash memory JTAG X9 connector is used. It is located on the PCB bottom side (see Figure 5: LimeSDR XTRX v1.3 board bottom connectors and main components) and is compatible with Molex 788641001 connector. JTAG connector pins, schematic signal names, FPGA interconnections and I/O standards are listed in Table 12.

Table 12. JTAG connector X9 pins

Connector pin

Schematic signal name

FPGA pin

I/O standard

Comment

1

TDO

W8

3.3V

Test Data Out

2

TDI

W10

3.3V

Test Data In

3

TMS

W9

3.3V

Test Mode Select

4

VCC3P3

Power (3.3V)

5

TCK

C8

3.3V

Test Clock

6

GND

Ground

GPIO connectors

Four GPIOs from FPGA are connected to 8 pin FPC connector (X12). GPIOS are separated by ground pins. Additional pin is dedicated for power as shown in Table 13.

Table 13. FPGA GPIO connector (X12) pins

Connector pin

Schematic signal name

FPGA pin

I/O standard

Comment

1

VCC3P3

3.3V

Power (3.3V)

2

GPIO9_P

H1

3.3V

3

GND

3.3V

Ground

4

GPIO9_N

J1

3.3V

5

GND

3.3V

Ground

6

GPIO11_P

K2

3.3V

7

GND

3.3V

Ground

8

GPIO11_N

L2

3.3V

Clock Distribution

LimeSDR XTRX board clock distribution block diagram is as shown in Figure 8.

../_images/LimeSDR-XTRX_v1.3_diagrams_clock.png

Figure 8. LimeSDR XTRX v1.3 board clock distribution block diagram

LimeSDR XTRX board features an on board 26.00 MHz VCTCXO as the reference clock for LMS7002M RF transceiver and FPGA PLLs.

Rakon E6982LF 26.00 MHz voltage controlled temperature compensated crystal oscillator (VCTCXO) is the clock source for the board. VCTCXO frequency may be tuned by using 16 bit DAC (IC17). Main VCTCXO parameters are listed in Table 14.

Table 14. Rakon E6982LF VCTCXO main parameters

Frequency parameter

Value

Calibration (25°C ± 1°C)

± 1 ppm max

Stability (-40 to 85 °C)

± 0.2 max

Long term stability (1 year, 3 years)

± 1 ppm max, ± 2 ppm max

Control voltage range

0.5V .. 2.8V

Frequency tuning

± 3 ppm

Slope

+4 ppm/V

Analogue switch gives option to select clock source for RF transceiver and FPGA from buffered VCTCXO onboard clock XO1 (CLK_XO) and external U.FL (X7)/mPCIe (X10) sources (CLK_IN). Buffered VCXO clock (LMK_CLKOUT3 and LMK_CLKOUT4) can also be fed to other board using U.FL (X7)/mPCIe (X10)connectors.

The board clock lines and other related signals/information are listed in Table 15.

Table 15. LimeSDR XTRX main clock lines

Schematic signal name

Source

Destination

I/O standard

CLK_XO

(VC)TCXO (XO1)

Analog mux

Clipped sinewave

CLK_IN

CLK_EXT or PCIE_CLK_IN

Analog mux

3.3V

CLK_EXT

U.FL connector

CLK_IN

3.3V

PCIE_CLK_IN

mPCIe connector

CLK_IN

3.3V

LMS_TxPLL_CLK

Analog mux

RF transceiver

1.8V

LMS_RxPLL_CLK

Analog mux

RF transceiver

1.8V

FPGA_CLK

Analog mux

FPA

3.3V

LMK_CLKOUT3

Analog mux

External

3.3V

LMK_CLKOUT4

Analog mux

External

3.3V

LMS_MCLK1

RF transceiver

FPGA

3.3V

LMS_FCLK1

FPGA

RF transceiver

3.3V

LMS_MCLK2

RF transceiver

FPGA

3.3V

LMS_FCLK2

FPGA

RF transceiver

3.3V

PCIE_REF_CLK_P/N

PCIe

FPGA

1PPSO_GPIO2(1P)

FPGA

mPCIe

3.3V

1PPSI_GPIO1(1N)

External

FPGA

3.3V

1PPS_IN

External

FPGA

3.3V

GNSS_1PPS

GNSS

FPGA

3.3V

Mini PCIe edge connector

LimeSDR XTRX board communicates with the host system via mPCIe connector. LimeSDR XTRX mini PCIe connector pinout and signals according to the specification is given in Table 16.

Table 16. Mini PCIe x1 edge connector pinout

Pin

Mini PCIe x1 Specification

LimeSDR XTRX

Schematic signal name

Description

1

Wake#

NC

Not connected

2

3.3 Vaux

VCC3P3_MPCIE

Main power input 3.3V (VCC3P3_MPCIE)

3

COEX1

1PPSI_GPIO1(1N)

External 1PPS input or GPIO1 or GPIO1N, CMOS 3.3 V

4

GND

GND

Ground

5

COEX2

1PPSO_GPIO2(1P)

GPS 1PPS output or GPIO2 or GPIO1P, CMOS 3.3 V

6

GND

NC

Not connected

7

CLKREQ#

CLK_REQUEST#

Tied to GND through resistor 330 Ohm

8

UIM PWR

UIM_VCC

User Identity Module interface power 1.8 V or 3V

9

GND

GND

Ground

10

UIM_DATA

UIM_DIO

User Identity Module interface data 1.8 V or 3V

11

REFCLK-

PCI_REF_CLK_N

PCI Express Reference clock differential pair negative signal

12

UIM_CLK

UIM_CLK

User Identity Module interface clock 1.8 V or 3V

13

REFCLK+

PCI_REF_CLK_P

PCI Express Reference clock differential pair positive signal

14

UIM_RESET

UIM_RST

User Identity Module interface reset 1.8 V or 3V

15

GND

GND

Ground

16

UIM_VPP

NC

Not connected

17

Reserved

TDD_GPIO3_N

TDD TX Enable output or GPIO3N or GPIO4, CMOS 3.3V

18

GND

GND

Ground

19

Reserved

CLK_IN

External clock input 3.3 V

20

W_DISABLE#

TDD_GPIO3_P

GPIO3P or GPIO3 (or Pair of TDD TX Enable), CMOS 3.3V

21

GND

GND

Ground

22

PERST#

PCIE_PERST#

PCI Express interface reset

23

PERn0

PCI_TX0_N

PCI Express interface output differential pair negative signal

24

3.3Vaux

NC

Not connected

25

PERp0

PCI_TX0_P

PCI Express interface output differential pair positive signal

26

GND

GND

Ground

27

GND

GND

Ground

28

1.5Volt

NC

Not connected

29

GND

GND

Ground

30

SMB CLK

SMB_CLK

Clock output (CLK_OUT)

31

PETn0

PCI_RX0_N

PCI Express interface input differential pair negative signal

32

SMB Data

SMB_DATA

GPIO8

33

PETp0

PCI_RX0_P

PCI Express interface input differential pair positive signal

34

GND

GND

Ground

35

GND

GND

Ground

36

USB_D-

USB_D_N

USB 2.0 data differential pair negative signal

37

GND

GND

Jumper to GND. Connected by default

38

USB_D+

USB_D_P

USB 2.0 data differential pair positive signal

39

3.3Vaux

PCI_TX1_N

PCI Express interface output differential pair negative signal

40

GND

GND

Ground

41

3.3Vaux

PCI_TX1_P

PCI Express interface output differential pair positive signal

42

LED_WWAN#

LED_WWAN#_GPIO5

Output for LED WWAN (Negative) or GPIO5 3.3 V

43

GND

GND

Jumper to GND. Connected by default

44

LED_WLAN#

LED_WLAN#_GPIO6

Jumper to GND. Connected by default

45

Reserved

PCIE_RESERVED

Connected to FPGA (V7)

46

LED_WPAN#

LED_WPAN#_GPIO7

Output for LED WPAN (Negative) or GPIO7 3.3 V

47

Reserved

PCI_RX1_N

PCI Express interface input differential pair negative signal

48

1.5Volt

NC

Not connected

49

Reserved

PCI_RX1_P

PCI Express interface input differential pair positive signal

50

GND

GND

Ground

51

Reserved

PCIE_W_DISABLE2#

Connected to FPGA (W3)

52

3.3Vaux

VCC3P3_MPCIE

Main power input 3.3V (VCC3P3_MPCIE)

Power Distribution

As indicated, LimeSDR XTRX board may be powered via USB port (5V) or mini PCIe edge connector (3.3V). LimeSDR XTRX board power delivery network consists of different power rails/voltages, filters and power sequences. LimeSDR XTRX board power distribution block diagram is presented in Figure 9.

../_images/LimeSDR-XTRX_v1.3_diagrams_power.png

Figure 9. LimeSDR XTRX v1.3 board power distribution block diagram